Gegenstand des Hauptpatentes ist ein Verfahren zur Herstellung mehrfarbiger Photographien und Kinobilder unter Anwendung von übereinander gegossenen, verschieden farbenempfindlichen, gefärbten Halogensilberschichten, das dadurch gekennzeichnet ist, daß die einzelnen gefärbten Teilschichten für Strahlen sensibilisiert sind, für welche die zur Anfärbung der Schichten benutzten Farbstoffe und die oberen Schichten durchlässig sind, und daß die diffus gefärbten Teilschichten beleuchtet, entwickelt und durch stellenweises Entfärben des Farbstoffes in Farbstoffbilder übergeführt werden.

Sofern bei diesem Verfahren, sowie bei andern bekannten Verfahren mehrfarbige Kopiervorlagen, zum Beispiel Rasterbilder oder Farbstoffbilder auf mehrschichtigem Material im Kontakt oder auf optischem Wege kopiert wurden, wurde für die Kopierung bis jetzt stets weißes Licht, gegebenenfalls unter Zwischenschaltung eines schwach gefärbten Korrektionsfilters, verwendet.

Ein Nachteil der angewandten Korrektionsfilter ist, daß das Korrektionsfilter immer sehr streng an die Eigenschaften eines einzigen Kopier- oder Aufnahmematerials angepaßt werden muß und man nicht in der Lage ist, die Lichtdurchlässigkeit des Kopierfilters zu variieren.

Bei der Ausführung des Verfahrens gemäß dem Hauptpatent haben sich in der Praxis verschiedene Unzulänglichkeiten und Fehler ergeben. Diese Unzulänglichkeiten kommen zum Teil daher, daß die oberen Schichten einen, wenn auch nur geringen Teil des Lichtes absorbieren, für welches die unteren Schichten sensibilisiert sind. Das Maß dieser Absorption und damit das Maß der Belichtung der tieferen Schichten schwankt deshalb, zum Beispiel wenn die oberen Schichten einen nicht genau gleichen Gehalt an Farbstoff, oder eine nicht gleich dicke Emulsionsschicht aufweisen, von einem Grunde zu andern. Die vorstehenden Nachteile kommen zum Teil auch daher, daß die tieferliegenden Schichten ge-

Die Belichtung gestaltet sich nun folgendermaßen:

Jede Teilschicht wird mit einer Lichtart kopiiert, für welche sie empfindlich ist. Die farbige Kopiervorlage wird erst mit dem roten, dann mit dem grünen und zuletzt mit dem blauen Kopierfilter belichtet. Zweckmäßig wird man die Belichtungszeit der ein-

Ferner kann man auch zu einem Licht mit variabler Zusammensetzung kommen, wenn man die Oberfläche einer optischen Linse oder eines Hohlspiegels oder auch eines Leuchtkörpers, zum Beispiel einer elektrischen Glühbirne, mit Filtern in zwei oder mehreren Farben abdeckt, und durch variable Abblendung der einzelnen Filtersektoren eine Veränderung in der Zusammensetzung des Lichtes bewerkstelligt. Hierbei kann die Abdeckung bzw. Abblendung der einzelnen Filtersektoren auch proportional mit den Kopiergraden des Kopierphotometers in Zusammenhang gebracht werden. Die Verwendung des Kopierphotometers gestaltet sich sehr einfach, und zwar folgendermaßen:

Die Berechnung der Veränderung der Belichtungszeit oder Lichtintensität kann in
bekannter Weise, wie es für Kopierphotometer üblich ist, erfolgen.

Das in einer der vorstehend angegebenen Weisen belichtete Material wird dann, wie im Hauptpatent angegeben, entwickelt und durch stellenweises Entfärben des Farbstoffes in den Teilschichten in Farbstockbilder übergeführt.

PATENTANSPRUCH:

UNTERANSPRÜCHE:

1. Verfahren nach Patentanspruch, dadurch gekennzeichnet, daß das Kopierrmaterial mit mindestens zwei verschiedenfarbigen Lichtarten belichtet wird, deren spektrale Zusammensetzung einzeln verändert werden kann.

3. Verfahren nach Patentanspruch und Unteransprüchen 1 und 2, dadurch gekennzeichnet, daß die Belichtung durch Blenden hindurch erfolgt, welche die Intensität der einzelnen Lichtarten zu verändern gestatten.

4. Verfahren nach Patentanspruch und Unteransprüchen 1 und 2, dadurch gekennzeichnet, daß die Belichtung durch Keile hindurch erfolgt, welche die Intensität der einzelnen Lichtarten zu verändern gestatten.

5. Verfahren nach Patentanspruch und Unteransprüchen 1 und 2, dadurch gekennzeichnet, daß die Intensität der einzelnen Lichtarten durch entsprechende Einstellung der Entfernung der einzelnen verschiedenfarbigen Lichtquellen dem Kopierrmaterial angepaßt wird.

Dr. Béla GĂŞPĂR.